

Kontrolery CSMIO/IP

Oś jako wrzeciono w Mach4

DOTYCZY:

H

WERSJA FIRMWARE (software): v3.xxx (Mach4)

<u>WERSJA SPRZĘTOWA</u> CSMIO/IP-S; CSMIO/IP-A v2 FP4 v2 H7

© copyright CS-Lab s.c. 2023: Rev 0

"Oś jako wrzeciono" w oprogramowaniu Mach4.

Przed przystąpieniem do konfiguracji funkcji opisanej w tej instrukcji musisz spełnić klika zasadniczych warunków:

- Funkcja ta jest przeznaczone tylko dla kontrolerów CSMIO/IP-S, CSMIO/IP-A, i wrzeciona napędzanego przez serwonapęd działający w taki sam sposób i tak samo precyzyjnie jak serwonapędy pozostałych osi (X, Y i Z).

- Serwonapęd mający napędzać wrzeciono, został wcześniej podłączona do kontrolera CSMIO/IP i skonfigurowany w taki sam sposób jak serwonapędy pozostałych osi. Mam tu na myśli także konfigurację Mach4 i plugin.

- W przypadku występowania przekładni pomiędzy serwonapędem, a wrzecionem należy pamiętać, że musi to być przekładnia bez poślizgowa. Oznacza to, że należy stosować przekładnie zębate np. przekładnia z pasem zębatym. Absolutnie nie dopuszcza się stosowania przekładni zbudowanych w oparciu o pasu typu Vbelt!

"Oś jako wrzeciono"

Funkcja ta pozwala na użycie serwonapędu skonfigurowanego jako oś OB do napędzania wrzeciona (serwonapęd staje się bezpośrednio osią OB).

Aby uruchomić funkcje "Oś jako wrzeciono" postępuj ściśle z czynnościami opisanymi w poniższych punktach, gdyż jakiekolwiek odstępstwo może poskutkować niewłaściwym działaniem tej funkcji.

1) Mapowanie osi (Axis Mapping).

Przejdź kolejno do "Configure/Control.../Axis Mapping". W wyświetlonym oknie wybierz jedna z nie zajętych osi "OB", następnie w kolumnie "Master" wybierz nie zajęty "Motor" i załącz oś po przez umieszczenie w kolumnie "Enabled" zielonego haczyka. W moim przypadku wybrałem oś OB1 i Motor2.

Pamiętaj:

Numer wybranego "Motoru" to w przypadku kontrolera CSMIO/IP-S numer wyjścia (kanału) step/dir, a w przypadku kontrolera CSMIO/IP-A numer wejścia (kanału) enkoderowego i wyjścia (kanału) analogowego +/-10V.

	Enabled	Master	Slave 1	Slave 2	Slave 3	Slave 4	Slave 5
X (0)	4	Motor0					
Y (1)	X						
Z (2)	4	Motor1					
A (3)	X						
B (4)	X						
C (5)	X						
OB1 (6)	4	Motor2					
OB2 (7)	X						
OB3 (8)	X						
OB4 (9)	X						
OB5 (10)	X						
OB6 (11)	X						

2) Ustawienia "Motor"

Przejdź kolejno do "Configure/Control.../Motors". W wyświetlonym oknie zaznacz "check box" dla "Motoru" wybranego w poprzednim kroku (ten sam numer "Motoru"). Następnie kliknij w nazwę "Motoru" znajdującą się po prawej stronie, spowoduje to wyświetlenie jego parametrów. W tym oknie należy także skonfigurować parametry "Counts", "Velocity" i "Acceleration".

Uwaga:

- W przypadku osi obrotowych do których zalicza się osią "OB" służąca do napędzania wrzeciona, jednostką podstawową wymienionych parametrów jest STOPIEŃ !

- Wymienione parametry odnoszą się tylko do samej osi OB, a nie do osi OB i wrzeciona. Oznacza to, że parametry te nie uwzględniają stosunku przekładni pomiędzy osią OB, a wrzecionem!

Dla lepszego zrozumienia opiszę parametry w osobnych punktach:

a) "Counts" - ilość impulsów przypadająca na jeden stopień obrotu osi OB. W przypadku kontroler CSMIO/IP-S parametr ten przedstawia ilość impulsów "step" jak jest potrzebna do obrócenia wału serwomotoru osi OB o 1 stopień.

W przypadku kontrolera CSMIO/IP-A parametr ten przedstawia ilość impulsów podanych na wejście enkoderowe podczas obrócenia wałem serwonapędu osi OB o jeden stopień. Parametr ten jest wyrażany w "Impulsach na Stopień" ("Pulses per Degree")

b) "Velocity" - prędkość obrotowa jaką jest w stanie znieść serwomotor osi OB w trybie ciągłym pracy wrzeciona. Prędkość ta nie powinna być maksymalną prędkością serwomotoru lecz nieco zaniżoną z uwagi na swobodę działania regulatora PID prędkości serwonapędu. W przeciwnym razie serwonapęd może zgłaszać błąd regulatora PID prędkości.

Parametr ten jest wyrażany "Stopniach na Minutę" ("Degrees per Minute")

c) "Acceleration" - przyspieszenie jakie jest w stanie znieść serwomotor osi OB podczas wielokrotnego rozpędzania i hamowania.

Parametr ten jest wyrażany w "Stopniach na Sekundę²" ("Degrees per Sec²").

Abyś dokładnie zrozumiał co oznaczają wyżej wymienione parametry, posłużę się przykładem jakim jest maszyna, na której przeprowadzałem testy. Z racji, że jest to biurkowa maszyna to jej wrzeciono jest napędzane napędem krokowym (nie ma to znaczenia, równie dobrze mógłbym użyć serwonapędu). Driver krokowy został skonfigurowany w taki sposób, że wymaga podania na wejście sygnału "step" 10000 impulsów, aby silnik krokowy wykonał jeden pełen obrót. Przyjąłem że prędkość dopuszczalna silnika krokowego będzie wynosiła 500RM, i da on radę bez problemu rozpędzić wrzeciona do dopuszczalnej prędkości obrotowej w 2 sekund. Na podstawie tych informacji możemy obliczyć wartość wszystkich wymaganych parametrów:

Counts = 10000 impulsów : 360 stopni Counts = 27.7(7) impulsów na stopień

Velocity = 500 obrotów na minutę * 360 stopni Velocity = 180000 stopni na minutę

Acceleration = Velocity : 60 sekund : 2 sekundy Acceleration = 180000 stopni na minutę : 60 sekund : 2 sekundy Acceleration = 1500 stopni na sekundę²

Po obliczeniu wartości parametrów przepisujemy je do okna "Motors", w moim przypadku wygląda to następująco:

5

3) Ustawienia "Spindle"

Przejdź kolejno do "Configure/Control.../Spindle". W wyświetlonym oknie należy skonfigurować 3 parametry, dla lepszego zrozumienia opiszę je w osobnych punktach.

- a) "Step/Dir Spindle Axis" Z rozwijanej listy wybierz oś "OB" o tym samym numerze, który wybrałeś w punkcie numer 1. W moim przypadku jest to oś "OB1". Parametr ten informuje oprogramowanie Mach4, która oś OB zostanie wykorzystana do napędzania wrzeciona.
- b) "Max Spindle Motor RPM" odpowiada parametrowi "Velocity", który został opisany w punkcie 2b. Jedyna różnica polega na tym że parametr "Velocity" jest wyrażany w stopniach na minutę, a parametr "Max Spindle Motor RPM" jest wyrażany w obrotach na minutę. W moim przypadku wartość parametru "Max Spindle Motor RPM" wynosi 500 obrotów na minutę.
- c) "MaxRPM" maksymalna prędkość obrotowa wrzeciona wynikająca z stosunku przekładni pomiędzy osią OB, a wrzecionem na danym biegu. Absolutnie nie może to być wartość wynikającą z chęci ograniczenia prędkości obrotowej wrzeciona na danym biegu.

Parametr ten jest wyrażany w obrotach na minutę.

Stosunek przekładni pomiędzy osią OB, a wrzecionem obliczamy dzieląc ilość zębów zębatki zamontowanej na wale serwomotoru motoru osi OB przez ilość zębów zębatki zamontowanej na wale wrzeciona.

$$i = \frac{Z1}{Z2}$$

Z1 – ilość zębów zębatki zamontowanej na wale serwomotoru osi OB.

Z2 – ilość zębów zębatki zamontowanej na wale wrzeciona.

i – stosunek przekładni pomiędzy motorem wrzeciona, a wrzecionem.

W moim przypadku zębatka zamontowana na wale silnika krokowego posiada 18 zębów, a zębatka zamontowana na wale wrzeciona posiada 40 zębów. Korzystając z powyższego wzoru otrzymujemy:

i = 18 zębów : 40 zębów i = 0,45

6

W tej chwili możemy już obliczyć wartość parametru "MaxRPM", aby tego dokonać należy pomnożyć wartość parametru "Max Spindle Motor RPM" przez wartość stosunku przekładni.

MaxRPM = Max Spindle Motor RPM * i

W moim przypadku wartość parametru "Max Spindle Motor RPM" wynosi 500 obrotów na minutę, a wartość stosunku przekładni wynosi 0,45. Korzystając z powyższego wzoru otrzymujemy :

MaxRPM = 500 obrotów na minutę * 0,45 MaxRPM = 225 obrotów na minutę

Po przepisaniu parametrów do okna "Spindle", w moim przypadku wygląda to następująco:

							5 1 5	
	MinRPM	MaxRPM	Accel Time	Decel Time	FeedBack Ratio	Reversed		^
0	0.00	225.00	0.00	0.00	1.00000	X		
1	0.00	0.00	0.00	0.00	1.00000	×		
2	0.00	0.00	0.00	0.00	1.00000	×		
3	0.00	0.00	0.00	0.00	1.00000	X		
4	0.00	0.00	0.00	0.00	1.00000	X		
5	0.00	0.00	0.00	0.00	1.00000	X		
6	0.00	0.00	0.00	0.00	1.00000	×		
7	0.00	0.00	0.00	0.00	1.00000	×		
8	0.00	0.00	0.00	0.00	1.00000	×		
9	0.00	0.00	0.00	0.00	1.00000	×		
10	0.00	0.00	0.00	0.00	1.00000	×		
11	0.00	0.00	0.00	0.00	1.00000	×		~
1ax Spir pindle tep/Dir	ndle Motor f Override Del Spindle Axis	RPM: 500.0 ay: 25 s: OB1 (6)	0 v (Axis mu	(ms) ust be enabled	on spindle to stabil and mapped.)	lize to 90	percent.	ping.

Jeśli twoja maszyna posiada skrzynię biegów wrzeciona wyposażaną w więcej przełożeń to czynności opisane w podpunkcie "c" musisz powtórzyć dla każdego z nich.

4) Test pracy wrzeciona.

Wyjdź z ustawień, przełącz program Mach4 w stan "Enable" (przycisk w lewym dolnym narożniku ekranu), wpisz w linię MDI komendę "M3 S100" i naciśniesz przycisk "Cycle Start Gcode". W tym momencie wrzeciono powinno zacząć się obracać się z prędkością 100 obrotów w kierunku zgodnym z ruchem wskazówek zegara. Jeśli tak się stało to oznacza to, że dotarłeś do końca konfiguracji funkcji "Oś" jako wrzeciono" i możesz rozpocząć uruchomienie funkcji "Pozycjonowanie wrzeciona (M19)".

Jeśli wrzeciono obraca się w kierunku przeciwnym do ruchu wskazówek zegara musisz przejść do zakładki "Motor" i użyć opcji "Reverse":

8